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Potential control/structures interaction problems of large flexible multibody structures in the presence of
pointing and tracking requirements are addressed. A control approach is introduced for the simultaneous
tracking and vibration control of multibody space structures. The application that is discussed is the planned
Space Station Freedom configured with solar dynamic modules. The solar dynamic fine-pointing and tracking
requirements may necessitate controller frequencies above the structural natural frequencies of space station and
the solar dynamic modules themselves. It is well known that this can give rise to control/structure interaction
problems if the controller is designed without giving due consideration to the structural dynamics of the system.
Possible control/structure interaction problems of Freedom’s solar dynamic power systems are investigated. A
finite element model of Freedom is used to demonstrate these potential control/structure interaction problems

and the proposed tracking and vibration control approach.

Introduction

HE purpose of this paper is to address potential control/

structure interaction (CSI) problems of large flexible
multibody structures in the presence of pointing and tracking
requirements. The application that is discussed is the planned
Space Station Freedom (SSF) configured with solar dynamic
(SD) modules.

Solar dynamic electrical power generating modules are be-
ing developed for SSF. SSF’s initial power source is photovol-
taic but SD is essential for the growth of SSF because its
efficiency is approximately four tifes that of the photovoltaic
(PV) alternative.! An SSF configuration with two SD power
systems and eight PV modules is illustrated in Fig. 1. Note that
SSF has been redesigned since this work was performed, how-
ever, the principles presented here remain applicable, The SD
power module is shown in Fig. 2. The concentrator collects
and focuses the sun’s radiated energy through an aperture into
the receiver and, thus, provides the heat energy input for a
closed Brayton cycle power system. The SD concentrator-re-
ceiver system must be pointed at the sun while its radiator is
oriented so that its edge is facing the sun. The SD power
system is described in detail by Secunde et al.!

““Alpha’’ and ‘‘beta’’ single-axis revolute joints are used to
orient the power modules (PV and SD) toward the sun
whereas the station inboard of the ‘‘alpha’’ joints is oriented
toward the Earth (see Fig. 1). The two alpha joints operate at
the orbital period of about 90 min. A single-axis revolute beta
joint between each power module and the station truss permits
each power module to rotate with respect to the station truss
outboard of the alpha joints. The beta joint axis is normal to
the truss longitudinal axis. The beta joints operate at the
seasonal frequency.
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For SD, precision alignment of the system consisting of the
sun, concentrator, and receiver aperture is necessary for opti-
mal power generating efficiency and to prevent thermal dam-
age to the receiver. Hence, two-axis fine-pointing (FP) joints
are provided to permit the concentrator to rotate relative to
the receiver. In addition to control systems for each of the
joints, the station attitude control system uses control moment
gyros (CMG) to maintain the orientation of SSF.

SSF’s structure is very flexible in comparison to Earth struc-
tures, having many natural frequencies below one-tenth of a
hertz. The SD fine-pointing and sun-tracking requirements
may necessitate controller frequencies above the structural
natural frequencies of SSF and the SD modules. It is well
known that this can give rise to CSI problems if the controller
is designed without consideration of the structure’s dynamics.

The most commonly used control law is the proportional
integral derivative (PID) controller, the output force of which
can be expressed as

F=

—k(x)—c(v)—Ijx dt a1

where k, ¢, and I are the position, velocity, and integral feed-
back gains, respectively; and x and v are the sensed position
and velocity variables, respectively. Note that the locations of
the actuator and three sensors can each be unique. If the
sensors and actuators are collocated in space (located on the
same relatively rigid body in the same orientation), a PD
controller acts as an active spring-damper system attached to

l— Solar dynamics .
module Z

Fig. 1 Space Station Freedom growth configuration.
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the controlled body. In this case, it is well known that the
system is inherently stable given perfect sensors and actuators.
Spanos? addressed the CSI related effects of sensor dynamics
and associated filter dynamics for PD control of flexible
spacecraft.

The case of collocation of sensors and actuators also implies
that the actuating force and the sensed motion are relative to
the same reference frame (body). For example, an actuator
can react against (relative to) an attached body; or, on the
other hand, an actuator can react (inertially) against expelled
fluid or a force field (gravitational or magnetic). In the same
way, a sensor can measure relative or inertial motion.

For a linearly flexible structure with control laws of the
form of Eq. (1), given relatively stiff actuator and sensor
dynamics, instability can be caused by the following?-:

1) In the case of noncollocated sensors, if the controller
frequency is in the range of the flexible modes, the controller
may excite flexible modes of vibration. The sensed motion
may be out of phase with the motion at the actuator so that the
actuator excites vibration.

2) Inthe case of inertial sensing and relative actuation, the
actuator can excite its supports or reaction mass. To prevent
this, the actuator supports must have relatively high funda-
mental frequencies compared to the controller bandwidth.

Previous work showed that special attention must be paid to
the SD controller design to avoid CSI problems. Previous CSI
studies used a NASTRAN model of the SD module mounted
on a three bay truss structure which was cantilevered to
ground. The FP gimbals were controlled at a rigid-body design
frequency of 0.5 Hz and damping ratio of 0.707. The position
sensors (sun sensors on the concentrator) were noncollocated
with the FP actuators, whereas the rate sensors were collo-
cated. The closed-loop model was found to be unstable. The
critical mode was found to have a natural frequency of 2.395
Hz.

One approach to avoid the noted instability is to stiffen the
SD structure so that its fundamental component natural fre-
quency is at least twice the FP controller frequency. The
radiator is the most flexible component in the SD system. In
fact, its fundamental natural frequency of about 0.07 Hz is
similar to the fundamental truss-bending frequency of SSF.
The drawback with this approach is that the control system
design is driving the structural design, perhaps adding unnec-
essary weight and creating deployment penalties. Also, it was
found that increasing the radiator stiffness does not monoton-
ically increase the stability of the system.’ Changing the con-
trol law is a much more practical and reliable alternative. It is
possible to design the controller with knowledge of the sys-
tem’s structural dynamics such that it does not cause struc-
tural vibrations. In this way, both stability and system perfor-
mance can be improved with less actuator effort.

In this paper potential CSI problems of the growth config-
ured SSF are demonstrated using a NASTRAN finite element
model through closed-loop simulations and eigenanalyses with
different sensor and controller configurations. Also, a control
approach is introduced for multibody space structures like
SSF where both large rigid-body motions and vibratory mo-
tions are controlled using the same hardware. This approach is
an extension of the approach of Ref. 6 for single flexible
bodies. In this way, modules can be targeted and finepointed
whereas, simultaneously, disturbance vibrations are damped.
The control system is configured to preclude control/structure
interactions that might lead to an instability.

Dynamic Modeling of Space Station Freedom

Maneuvers can affect the mode shapes, natural frequencies,
and apparent damping characteristics of the structure as well
as apply disturbance forces and torques. However, if the
rotational maneuver rate is at least an order of magnitude less
than the lowest structural natural frequency, then the struc-
tural effects are negligible.”

For SSF, the maneuvers consist of 1) reboost, translation of
the entire structure; and 2) rotation of the main structure to
maintain its attitude relative to the Earth on the order of
0.0002 Hz (alpha rotation rate). Note that the power modules
orientations are essentially inertially fixed.

The maximum rates of these rotational maneuvers are rela-
tively small, so that we can neglect their structural effects in
the eigenanalysis and stability analysis (left side of the equa-
tions of motion). Hence, linear finite element modeling at
particular joint configurations is sufficient in this case. How-
ever, the disturbances to the structure due to the inertial forces
during these maneuvers could be of the order of magnitude of
the other disturbances and, therefore, should not be neglected
in the performance analysis (right side of the equations of
motion).

The NASTRAN model of the SSF configuration shown in
Fig. 1 that was used in this study was developed by NASA and
contained hundreds of modes with natural frequencies below
5 Hz. These hundreds of modes were reduced through modal
selection to 149 modes that were found to have the most
pronounced effects on the SD modules. Blelloch et al.® re-
cently discussed this type of modal representation for control/
structure interaction studies. The 149 mode model includes 22
rigid-body modes: six degrees of freedom for the main mod-
ules and truss; two degrees of freedom provided by the alpha
joints; ten degrees of freedom provided by the PV and SD beta
joints; and four degrees of freedom provided by the SD FP
joints.

The balance is a set of 127 flexible system modes. Table 1a
contains the first 85 natural frequencies in ascending order
expressed in hertz. Note the groups of eight repeated frequen-
cies that are associated with the eight PV arrays such as modes
40-47, 52-59, and 70-77. Plots of the mode shapes enabled
the categorization of the other modes of interest.

Modeling and Control Theory
A finite element model of the distributed parameter space
station can be expressed by the following discrete equations of
motion in matrix form:

Mg+ Ck+Kx=F )

where M, C, and K are the N X N mass, damping, and
stiffness matrices, respectively; and F and x are the force and
displacement vectors, respectively. Actually, C is assumed to
be proportional to the K matrix, so that the damped and
undamped eigenvectors are identical and only the undamped
eigenvalue problem must be solved.

Modal selection permits the reduction of the system order
from Nto n < N. Let w? and X; denote the ith eigenvalue and
eigenvector pair. A subset X (N X n) of the modal matrix may
be selected which includes only those eigenvectors that display
relatively greater contributions to the motion of the SD mod-
ules. The physical motions of the finite element nodes can be
approximately expressed in terms of a subset of modal or
natural coordinates by means of the expansion theorem or

x =Xq 3)
The eigenvectors are normalized such that
XTMX =1 @

where I is an # X # identity matrix. A consequence of this is
that

XTKX =Q (5a)
and

X'CX =2 (5b)

where © and Z are n X n diagonal matrices. The elements of
are the squares of the natural frequencies ? and the elements
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Table 1 First 85 open- and closed-loop natural frequencies
and damping ratios; in each case, the first three modes are
rigid-body translational modes

b) Closed-loop
Mode Nat. Freq., Hz Damping Ratio

a) Open loop
Mode Nat. Freq., Hz

4 0 4 0.01010342 0.68854
5 0 5 0.01032644 0.69335
6 0 6 0.01037411 0.70621
7 0 7-14 0.03974 0.6314

8 0 15 0.04310934 0.67766
9-16 0 16 0.04500294 0.66892
17 0 17 0.05033278 0.75484
18 0 18 0.05036071 0.75668
19 0 19 0.06294467 0.13902
20 0 20 0.06362111 0.14220
21 0 21 0.07358124 0.00095
22 0 22 0.07611361 0.05184
23 0.07350245 23 0.07642071 0.08169
24 0.07424994 24 0.08817219 0.00511
25 0.07574014 25 0.09409242 0.00591
26 0.07651404 26 0.1010969 0.02747
27 0.07806754 27 0.1031793 0.02856
28 0.08882223 28 0.1206393 0.03835
29 0.09397283 29 0.1308942 0.05488
30 0.1009129 30 0.1330511 0.00303
31 0.1027209 31 0.1479734 0.06401
32 0.1214049 32 0.1587980 0.01176
33 0.1299069 33 0.1589121 0.02463
34 0.1330869 34 0.1641435 0.01711
35 0.1454049 35 0.1641517 0.01733
36 0.1580439 36-43  0.17047 0.2498

37 0.1605129 44 0.1823774 0.00989
38 0.1682609 45 0.2354173 0.03425
39 0.1682809 46 0.2442367 0.06812
40-47  0.1702689 47 0.2528758 1.00000
48 0.1846808 48 0.2967362 0.28062
49 0.2334408 49 0.3048874 0.01084
50 0.2490278 50 0.3110307 0.22195
51 0.2966708 51-58  0.31294 0.0552

52-59  0.3175788 59 0.3162505 0.01732
60 0.3181077 60 0.3169998 0.04938
61 0.3219167 61 0.3213624 1.00000
62 0.3622357 62 0.3661365 0.00490
63 0.3749907 63 0.3986437 0.07544
64 0.3903067 64 0.3991456 0.02850
65 0.4196957 65 0.4012355 0.06181
66 0.4215126 66 0.4176685 0.04391
67 0.4320067 67-74  0.46556 0.06756
68 0.4561986 75 0.4835596 0.01172
69 0.4779116 76 0.4888282 0.02814
70-77  0.4780556 77 0.5342067 0.15841
78 0.5169356 78 0.5549151 0.00115
79 0.5498865 79 0.5907501 0.00207
80 0.5570155 80 0.5941301 0.00295
81 0.5913075 81 0.5966291 0.07287
82 0.5934995 82 0.5980402 0.00985
83 0.6117465 83 0.6827942 0.02978
84 0.6385115 84 0.6846537 0.83247
85 0.6593305 85 0.7127077 0.82926

of Z are 2{;w; where {; is the damping ratio of the ith mode.
Inserting Eq. (3) into Eq. (2) and premultiplying by X7, the
reduced order model in natural coordinates can be expressed
in matrix form as

Gg+24+Qq=f (6a)
f=XTF (6b)
or in scalar form

gi + 25w0iG; + 0iq; = fi i=1,2,...,n 0]

The modal and physical forces can be partitioned into two
parts: control forces and disturbance forces, or f = f, + fyand
F = F_ + F;. Each actuator is capable of applying a force or

torque at certain locations on the structure. The actuator
forces are transformed into modal forces through Eq. (6b).
Let the truncated modal matrix that only includes the actuated
nodes be defined as X,. Hence, the modal control forces and
torques can be expressed as

fc = XcTFc (€))

A PID output feedback control law can be expressed as
F.= — |:G1xm + Gme + G()Sxm df] (9)

where Gy, G,, and G, are gain matrices and x, and x,, are
sensed measurement vectors of displacements and velocities.
The gain matrices can cause controller coupling (centralized
control) so that each actuator force depends on any or all
sensor outputs. The controller is decentralized if each actuat-
ing force depends on measurements from only one position
sensor, one velocity sensor, and one integrated position sen-
sor. The three sensed measurements could be taken from a
single location or from different locations.

Introducing Eq. (9) into Eq. (8), the modal control force
can be expressed as

Jo=— XCT[ Gixy + Gokyy + Gojx,,, dt:l (10)

Letting X, be defined as that portion of the modal matrix X
that corresponds to the measurement locations and introduc-
ing Eq. (3) into Eq. (10) the modal control force becomes

fc = - XCTGleq - XcTGZqu - XcTGOXmS‘q dt (11)

Introducing Eq. (11) into Eq. (6a), the closed-loop modal
equation of motion can be expressed as

g+ [Z +XCTG2Xm]q + [Q+XCTG1Xm}q

+ Xfcoxmgq dr = f, (12)

In general, the natural modes are coupled by the control law
so that the closed-loop and open-loop mode shapes are differ-
ent.’

The space station is a collection of flexible bodies connected
by joints with actuators at the joints. The actuators couple the
various modules of SSF through the joints because in order to
apply a force on one body the actuator must react with equal
and opposite force against an adjacent body at the joint.
Hence, the controllers at the joints reduce the number of
rigid-body (zero frequency) modes from 22 to 6. (The attitude
controllers further reduce the rigid-body modes of the closed-
loop system to three translational modes.) As a consequence,
the flexible modes are also coupled so that all of the closed-
loop mode shapes may be altered substantially from their
open-loop form.

Proportional Integral Derivative Control Gain Design

Control gains can be chosen based on the desired rigid-body
performance, that is, pole placement of the rigid-body modes.
Let the jth modal gains be defined as gy;, g2;, and g, for
modal position, velocity, and the integral of position. Neglect-
ing structural damping, the closed-loop jth modal equation of
motion from Eq. (12) may be expressed as

G + &yq; + (g1 + WDy + ngSQj dt = fy 13)

The characteristic equation for mode j is

$3+ gys2+ (0] + 815 + 8y =0 (14)
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Let the closed-loop eigenvalues be expressed as
Sip=q; £if3; (15a)
S3="; (15b)
where «; is the decay rate and §; the damped natural fre-

quency. The closed-loop characteristic equation can be ex-
pressed in the form

(52 + 28 w8 + ng) s-v)=20 (16)

where {;and w,; are the closed-loop damping ratio and natural
frequency of mode j. Hence, the closed-loop characteristic
values are related according to

o = — (Cj Wej (173)
Bj = wy (1= 5" (17b)

The control gains for mode j required to achieve these eigen-
values are

8o = ’Yj(ajz' + sz) (182)
gy =20y +of + B —of (180)
&= — Qo +7)) (18¢)

Equations (18) can be used to determine the modal gains for
desired rigid-body pole placement. The feedback gain matrices
of Eq. (9) can then be formed based on the modal gains and
Eq. (10). This PID control gain design was also developed
concurrently by Silverberg and Norris. '

The form of the gain matrices, that is, the type of rigid-body
modal coupling, depends on the type of feedback: relative or
inertial. For example, consider two-single-degree-of-freedom
discrete masses which are to be coupled with a position con-
troller. The modal matrix for inertial displacements X, is a
2 x 2 identity matrix. If the difference between the two posi-
tions is to be fed back to the controller, the gain matrix takes

the form
G =[ & - } (19)
-8 &

and the controller acts as a spring between the two masses. If
the feedback is on the inertial position of the second mass, the
gain matrix takes the form

G= [0 g} (20)

The controller acts as a spring to ground for the second mass,
but as a disturbance on the first mass, which acts as the
reaction mass. The adverse effects of this excitation of parts of
a structure that are used as reaction masses are discussed in
Ref. 5.

Clearly, in either case, the controller will couple the flexible
natural modes. When the sensors are collocated with the actu-
ators and PD control laws are used, the actuators act as
springs and dampers at the joints. These active dampers can
provide considerable vibration damping to the structure.

Tracking and Vibration Control Approach

Once the gains are determined based on desired rigid-body
performance, the vibrations of the resulting closed-loop sys-
tem will also be controlled with the same actuators. Because of
modal coupling as illustrated by Eq. (12), the control gains
may need to be adjusted to achieve desired pole placement.
This adjustment should be based on the closed-loop system

Table 2 Velocity and position gains for rigid-body pole placement

Structure DOF

SS rotation x
SS rotation y
SS rotation z
Alpha joints
PV beta joints
SD beta joints
FP gimbal inner
FP gimbal outer

Velocity, 1b*s/in.

2.20252 E+08
2.74866 E+ 07
0.23570 E+ 09
5.55083 E+ 06
0.14976 E+ 05
4.23093 E+ 05
3.85542 E+ 06
3.35542 E+ 06

Position, 1b/in.

0.98849 E + 07
1.23359 E+06
1.05970 E + 07
0.99648 E + 06
0.26618 E + 04
7.59535 E+04
8.65155 E+06
7.70155 E+ 06

using structural vibration control theory to further enhance
overall performance. One candidate vibration control theory
is uniform damping control which is straightforward to apply
given the discussion of it in the preceding section.!! This
control gain adjustment can increase system performance and
reduce required actuator effort. The system controller may be
designed in two steps: rigid-body control and vibration control.

Tracking (e.g., the SD module tracking the sun whereas the
main modules remain Earth-oriented) requires relative rigid-
body motions and can be achieved using inertial navigation
sensors such as sun sensors. The inertial information can be
fed back to joint controllers so that the effective null “‘stretch
length’’ of the ‘“active spring’’ changes accordingly. With this
in mind, the feedback control torque for a joint can be ex-
pressed as

T= —k(0—00)—c(w—w0)—1S(O—GO) dr 21

where 6 and w are the sensed angular displacement and veloc-
ity of a module (or the difference between the two adjacent
modules that the joint connects), respectively; and 6, and wyq
are the desired angular displacement and velocity which can be
time varying. The control gains, k£, ¢, and I, can remain
constant or can be time varying based on rigid-body motions.
The tracking (and, hence, time rate of change of 8, and wy) will
be at a relatively slow rate (90-min orbit period) compared to
the structural frequencies and vibration controller frequen-
cies. In fact, as discussed in the second section, wy is orders of
magnitude slower than the structural frequencies and, hence,
can be considered essentially zero for the purposes of vibra-
tion analysis. Hence, these control gains may be chosen based
on rigid-body performance as in Egs. (18).

Stability Analysis Results

A stability analysis was conducted to demonstrate CSI is-
sues. Note that we have chosen to neglect structural damping
for the stability analysis. In this way, any destabilizing or
stabilizing effects will be readily apparent and will not be
masked by ad hoc structural damping. Structural damping
tends to improve system stability, hence, this is a limiting case.

Table 2 contains the velocity and position gains for the 19
PD controllers. These gains were chosen based on collocated
PD control laws and pole placement of the 19 rotational
rigid-body modes such that the system displayed the closed-
loop rigid-body eigenvalues shown in Table 3. At the time that
this research was performed, the baseline-design control band-
widths for the space station were listed as 0.01 Hz for the
inertial navigation system, 0.04 Hz for the alpha joints and for
the beta joints, and 0.5 Hz for the SD fine-pointing joints. The
damping ratios were listed as 0.707 for all controllers. The
closed-loop system has three rigid-body (translational) modes.
(Subsequent work has shown that SSF control moment gyros
may not be capable of attaining the 0.01 Hz bandwidth.!?)

These collocated PD controllers were applied to the flexible
SSF model. The resulting closed-loop eigenvalues are shown in
Table 1. Comparing Tables 1 and 3, we see that the rigid-body
eigenvalues are noticeably altered. This is not surprising be-
cause the FP controller bandwidths are well above many of the
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Table 3 Rigid-body collocated controller design

Function Mode Nat. Freq., Hz Damping ratio
Station 4 0.01002656 0.69479
rotations 5 0.01016634 0.70528
6 0.01024282 0.71472
Alpha 7 0.03988495 0.72386
joints 8 0.04045301 0.73716
PV beta 9-16 0.03818168 0.67487
SD beta 17 0.04388041 0.76608
joints 18 0.04393031 0.76793
SD FP 19 0.4985832 0.70649
20 0.5001788 0.70552
21 0.5017476 0.70873
22 0.5049748 0.71391
Sun sensor Y
Radiator \
assembly — _.— Concentrator

¢ assembly

X

Fig. 2 Solar dynamic power module.

structural frequencies. Some modes are critically damped (or
overdamped), for example, modes 47 and 61. Also note that
the joint controllers provide considerable damping to the flex-
ible modes. For instance, the PV open-loop mode numbers
40-47, 52-59, and 70-77 correspond to closed-loop numbers
36-43, 51-58, and 67-74, respectively. The frequencies are
only slightly changed but the damping provided by the con-
trollers is quite significant at 25, 5.5, and 6.7%, respectively.
In fact, the majority of the flexible modes are damped at least
a few percent. Hence, we see that the joint controllers act as
vibration dampers as well as couple the rigid-body modes.
Control spillover into the flexible modes is beneficial.
Although the preceeding analysis is encouraging, collocated
control may not be practical for pointing the power modules.
The joints controllers provide internal torques but pointing
the power modules requires sensing of the sun’s position
which is inertially fixed. For example, sun sensors on the
concentrators can measure x and y rotations of the concentra-
tors relative to the sun where the z axis is normal to the sun.
In the joint configuration of this dynamic model, the inner FP
ring gimbal axis aligns nominally with the y axis (SSF truss
longitudinal axis) and the outer FP ring axis aligns nominally
with the line formed by — 0.6x + 0.8z. A controller similar to
the collocated controller already given was formed, except the
FP position sensing was taken from the sun sensors: — x to
the outer ring and y to the inner ring. The velocity feedback
remained collocated at the FP gimbals. This configuration had
three unstable modes: 0.1764, 0.1767, and 0.4037 Hz with
damping ratios of — 0.04, ~ 0.04, and — 0.007, respectively.
Clearly in the preceding case, the outer ring position con-
troller is missing the z axis feedback information. To check

FORGE (LB)
[2]0)

200
0
-200
-400
-600 L - L !
0 10 20 30 40 50

TIME (SEC)

Fig. 3 Docking forces on Space Station.
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Fig. 4 Docking moments on Space Station.
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Fig. 5 Translation of the center of mass of Space Station.
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0
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_0-025 i —_ t 1

0 10 20 30 40 50
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Fig. 6 Rotation of the habitation modules.
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this we assumed the existence of z inertial rotational sensors
on the port concentrator and formed a controller the same as
earlier but with position feedback to the outer ring of
— 0.6x + 0.8z. This closed-loop system was found to be sta-
ble. Hence, we see that the already noted instability is a result
of improper feedback due to the lack of a sensor to measure
the z rotations (an observability problem) and that noncollo-
cation is not a problem.

Finally, a controller was formed such that the feedback to
the port FP rings for position and velocity was taken from x,
vy, and z oriented sun sensors. In this case, the closed-loop
system was found to be unstable at 2.2597 Hz with a damping
ratio of — 0.003. A small amount of structural damping (typ-
ically taken to be 0.5%) is enough to stabilize the system. This
instability is caused by the noncollocated FP sensor-actuator
arrangement. We believe that damping from the alpha and
beta joints prevent a greater degree of instability in this case.
For brevity we have not included tables of eigenvalues for the
last three cases, but a summary of the stability analysis is
shown in Table 4. Note that collocated velocity feedback
stabilizes the system in which noncollocated position feedback
was used.
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0.005

-0.005
-0.01
-0.015

-0.02 i ‘W‘Wm

-0.025 | 1 I L
30 40 50

20
TIME (SECS)

Fig. 7 Port concentrator rotation with collocated control.
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Fig. 8 Port concentrator rotation with no FP control.
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Fig.9 Port concentrator rotation using inertial sensors at the con-
centrator as feedback to the FP controllers.

Simulations of Space Station Freedom

Numerical simulations of SSF were conducted to demon-
strate the tracking and vibration control approach using the
control gains of Table 2 which are based upon rigid-body pole
placement. Motions at various points were plotted vs time
during a Shuttle docking at the primary docking location. The
input docking forces and moments (Figs. 3 and 4) are worst
case docking forcing functions. Note that after docking, the
Shuttle is attached to SSF and substantially alters the dynamic
model. However, we have neglected this effect in the simula-
tions.

To demonstrate the need for tracking control applied at the
joints, collocated vibration control was applied initially at all
of the joints without tracking control. Each of these vibration
controllers uses relative sensing across the joint and attempts
to minimize this relative motion. This is equivalent to applying
torsional springs and dampers at each of the joints. In this
case, pointing of the power modules can only be accomplished
by the space station attitude controllers because it is the only
control system which makes use of inertial sensing.

Docking causes SSF’s center of gravity (c.g.) to translate
and rotate significantly as shown in Figs. S and 6, respectively.
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Fig. 10 Port concentrator rotation using station inertial navigation
sensor feedback to the FP controllers.
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Fig. 11 Port SD control moments for tracking control.
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Fig. 12 Radiator tip displacement during tracking control.
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Table 4 Stability analysis summary: fine-pointing joints
controlled using sensors at different locations and in
different controller configurations

Sensor location

tdshteliatbinteinl Critical Damping
Case  Position Rate Stability  freq., Hz ratio
1 Coll.2 Coll. Stable
2 Conc.b Coll. Unstable 0.1764 —0.0419
X,y Coll. 0.1767 —0.0423
0.4037 —0.0070
3 Conc. Coll. Stable
X, ¥, Z
4 Conc. Conc. Unstable 2.2597 —0.0032

X5 Vs Z X, Y, 2

2Coll. =collocated. ®Conc. =inertial sensors on concentrator.

However, for SD we are most interested in the orientation of
the concentrator with respect to the sun. Precise pointing
specifications were not defined when this research was con-
ducted but a good rule is that the concentrator should be
pointed within 0.1 deg at all times for best SD performance.
With collocated vibration control and no tracking control, the
concentrator rotation very nearly followed the c.g. rotations
as expected. The y axis pointing is off by about 1 deg (0.02
rad) for more than 30 s as can be seen in Fig. 7. Tracking
control is clearly needed because the station attitude control
system cannot respond quickly enough to damp the motions
caused by docking.

As an additional check of the simulation and of the need tor
tracking control, next the FP control was disabled such that
the FP gimbals were free to rotate. In this case, the rotation of
the receiver and supporting structure caused the concentrator
to rotate as shown in Fig. 8. The c.g. of the concentrator
remained fixed and its supporting truss acted as a moment arm
to rotate it away from its desired orientation.

Based on the preceding, tracking control is clearly needed in
order to point the power modules during docking. If we mea-
sure the inertial orientation (x, y, z) of the concentrator
(preferably near the gimbals), we can feedback this angular
position information to the gimbal ring controllers for track-
ing control as in case 3 of the stability analysis. (Note that
collocated velocity feedback is used.) This case is illustrated in
Fig. 9; pointing is maintained within 0.06 deg (0.001 rad)
during docking.

If we do not have a direct measure of the inertial orientation
of the concentrator, we can use SSF’s main inertial guidance
sensing information as in Eq. (21). In this case, — 6, is the
station’s inertial orientation and @ is the difference between
the gimbal ring orientation and its supports. The sum 6 + 8 is
an approximation of the inertial rotation of the concentrator
supports. Note that SSF’s motion 8, is guaranteed to be rela-
tively slow because of its large inertia. The concentrator orien-
tation error is illustrated in Fig. 10. The maximum off point-
ing is less than 0.29 deg (0.005 rad). The error is due to the
difference in orientation between the main modules and the
SD supports caused by the alpha and beta joints and flexible
motions. Hence, we conclude that concentrator pointing can
be maintained during severe docking maneuvers without addi-
tional inertial sensors. The FP control moments required for
tracking are illustrated in Fig. 11.

Because we are using a decentralized control strategy, point-
ing of SD is independent of the station attitude. Hence, sub-
stantially reducing the bandwidth of the attitude control sys-
tem as suggested in Ref. 15 will not significantly affect the
pointing performance of SD.

Radiator tip flexible vibration is shown in Fig. 12 for the
station tracking case. Note that this 4-in. vibration amplitude
(the largest of any point on the radiator) is at the tip of the
cantilevered radiator which is over 60 ft long. This vibration
should be acceptable. Note that the fundamental frequency of
vibration (from Fig. 12) is about 0.07 Hz which corresponds to
the fundamental truss and radiator bending frequencies.

Conclusions

The actuators at the joints couple the 16 component rigid-
body modes of the space station. As a consequence, the flex-
ible modes are also coupled so that all of the closed-loop
modes can be altered substantially from their open-loop form.
The closed-loop eigenvalues including and excluding the flex-
ible modes in the model are noticeably different because of the
coupled control approach. The structural damping of the flex-
ible modes is augmented considerably by the controllers,
which inherently act as vibration dampers. The system con-
troller can be designed in two steps: rigid-body control and
vibration control. Collocated decentralized PD controllers
with relative sensing and actuating act as ‘‘active springs and
dampers’’ and are inherently stabilizing. A noncollocated de-
centralized controller can be considered ‘‘unnatural’’ since
there is no mechanical analog and it is inherently destabilizing.
Inertial sensing with relative actuation is inherently destabiliz-
ing, because a part of the structure is used as a reaction mass.
However, if collocated velocity feedback is used in conjunc-
tion with inertial sensing, controller bandwidths that are
higher than the natural frequencies of components attached to
the reaction mass may be permissible. This is the case for
fine-pointing control of the SD concentrator relative to the SD
receiver with a very flexible radiator attached to the receiver.
Tracking control, using inertial orientation sensors on the
concentrator or the station inertial guidance sensors, was
found to be stable and effective for pointing the concentrator.
The radiator flexible motion was found to be relatively small
during the most severe Shuttle docking maneuver.
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